If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 35k2 + -22k + 7 = -4 Reorder the terms: 7 + -22k + 35k2 = -4 Solving 7 + -22k + 35k2 = -4 Solving for variable 'k'. Reorder the terms: 7 + 4 + -22k + 35k2 = -4 + 4 Combine like terms: 7 + 4 = 11 11 + -22k + 35k2 = -4 + 4 Combine like terms: -4 + 4 = 0 11 + -22k + 35k2 = 0 Begin completing the square. Divide all terms by 35 the coefficient of the squared term: Divide each side by '35'. 0.3142857143 + -0.6285714286k + k2 = 0 Move the constant term to the right: Add '-0.3142857143' to each side of the equation. 0.3142857143 + -0.6285714286k + -0.3142857143 + k2 = 0 + -0.3142857143 Reorder the terms: 0.3142857143 + -0.3142857143 + -0.6285714286k + k2 = 0 + -0.3142857143 Combine like terms: 0.3142857143 + -0.3142857143 = 0.0000000000 0.0000000000 + -0.6285714286k + k2 = 0 + -0.3142857143 -0.6285714286k + k2 = 0 + -0.3142857143 Combine like terms: 0 + -0.3142857143 = -0.3142857143 -0.6285714286k + k2 = -0.3142857143 The k term is -0.6285714286k. Take half its coefficient (-0.3142857143). Square it (0.09877551021) and add it to both sides. Add '0.09877551021' to each side of the equation. -0.6285714286k + 0.09877551021 + k2 = -0.3142857143 + 0.09877551021 Reorder the terms: 0.09877551021 + -0.6285714286k + k2 = -0.3142857143 + 0.09877551021 Combine like terms: -0.3142857143 + 0.09877551021 = -0.21551020409 0.09877551021 + -0.6285714286k + k2 = -0.21551020409 Factor a perfect square on the left side: (k + -0.3142857143)(k + -0.3142857143) = -0.21551020409 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 8.1x+82.76=-11.9x+82.20 | | 7.3x-3.6=25.6 | | 0.18-0.02(x+2)=-0.02(1-x) | | In(9x+1)=6 | | g(x)=2x^2+4x+2 | | 80=2x+(2y+20) | | -(z+5)+(6z+1)=3(z+1) | | 4x+2-2x=5 | | 40=4.9t^2+19t | | 12x^3+9x^2+15x= | | 42+x=62 | | 80=2x+(2y-10) | | 3w+4w=42 | | ln(a)=6 | | 80=2x+(2y+10) | | 51-x=48 | | wsquared-8w+7=0 | | 10-x=1 | | 6-ln(a)=0 | | 2x+2y-10=80 | | 5(2z-1)-2(z+9)=3(z+1) | | 6+ln(x)=0 | | 2x+6+5x-12=180 | | 3-4x=x | | 20=(2x+1) | | 3x+3=3(x+5) | | 2x+6+5x-12=90 | | 6+ln(a)=0 | | -6(3m-6)=-18 | | 5(2x-1)-2(z+9)=3(z+1) | | -(3m-6)=-18 | | ln(8)+ln(256)=xln(2) |